Detection of Behavioral Anomalies in Medication Adherence Patterns Among Patients With Serious Mental Illness Engaged With a Digital Medicine System

Author:

Knights JonathanORCID,Heidary ZahraORCID,Cochran Jeffrey MORCID

Abstract

Background Adherence to medication is often represented in the form of a success percentage over a period of time. Although noticeable changes to aggregate adherence levels may be indicative of unstable medication behavior, a lack of noticeable changes in aggregate levels over time does not necessarily indicate stability. The ability to detect developing changes in medication-taking behavior under such conditions in real time would allow patients and care teams to make more timely and informed decisions. Objective This study aims to develop a method capable of identifying shifts in behavioral (medication) patterns at the individual level and subsequently assess the presence of such shifts in retrospective clinical trial data from patients with serious mental illness. Methods We defined the term adherence volatility as “the degree to which medication ingestion behavior fits expected behavior based on historically observed data” and defined a contextual anomaly system around this concept, leveraging the empirical entropy rate of a stochastic process as the basis for formulating anomaly detection. For the presented methodology, each patient’s evolving behavior is used to dynamically construct the expectation bounds for each future interval, eliminating the need to rely on model training or a static reference sequence. Results Simulations demonstrated that the presented methodology identifies anomalous behavior patterns even when aggregate adherence levels remain constant and highlight the temporal dependence inherent in these anomalies. Although a given sequence of events may present as anomalous during one period, that sequence should subsequently contribute to future expectations and may not be considered anomalous at a later period—this feature was demonstrated in retrospective clinical trial data. In the same clinical trial data, anomalous behavioral shifts were identified at both high- and low-adherence levels and were spread across the whole treatment regimen, with 77.1% (81/105) of the population demonstrating at least one behavioral anomaly at some point in their treatment. Conclusions Digital medicine systems offer new opportunities to inform treatment decisions and provide complementary information about medication adherence. This paper introduces the concept of adherence volatility and develops a new type of contextual anomaly detection, which does not require an a priori definition of normal and allows expectations to evolve with shifting behavior, removing the need to rely on training data or static reference sequences. Retrospective analysis from clinical trial data highlights that such an approach could provide new opportunities to meaningfully engage patients about potential shifts in their ingestion behavior; however, this framework is not intended to replace clinical judgment, rather to highlight elements of data that warrant attention. The evidence provided here identifies new areas for research and seems to justify additional explorations in this area.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Reference22 articles.

1. Thinking Outside the Pillbox — Medication Adherence as a Priority for Health Care Reform

2. Non-adherence to medication in patients with psychotic disorders: epidemiology, contributing factors and management strategies

3. Antipsychotic Adherence Over Time Among Patients Receiving Treatment for Schizophrenia

4. FDA Approves Pill With Sensor That Digitally Tracks if Patients Have Ingested Their MedicationUS Food and Drug Administration20172020-08-07https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm584933.htm

5. Anomaly detection

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3