Utility of Facebook’s Social Connectedness Index in Modeling COVID-19 Spread: Exponential Random Graph Modeling Study

Author:

Prusaczyk BethORCID,Pietka KathrynORCID,Landman Joshua MORCID,Luke Douglas AORCID

Abstract

Background The COVID-19 (the disease caused by the SARS-CoV-2 virus) pandemic has underscored the need for additional data, tools, and methods that can be used to combat emerging and existing public health concerns. Since March 2020, there has been substantial interest in using social media data to both understand and intervene in the pandemic. Researchers from many disciplines have recently found a relationship between COVID-19 and a new data set from Facebook called the Social Connectedness Index (SCI). Objective Building off this work, we seek to use the SCI to examine how social similarity of Missouri counties could explain similarities of COVID-19 cases over time. Additionally, we aim to add to the body of literature on the utility of the SCI by using a novel modeling technique. Methods In September 2020, we conducted this cross-sectional study using publicly available data to test the association between the SCI and COVID-19 spread in Missouri using exponential random graph models, which model relational data, and the outcome variable must be binary, representing the presence or absence of a relationship. In our model, this was the presence or absence of a highly correlated COVID-19 case count trajectory between two given counties in Missouri. Covariates included each county’s total population, percent rurality, and distance between each county pair. Results We found that all covariates were significantly associated with two counties having highly correlated COVID-19 case count trajectories. As the log of a county’s total population increased, the odds of two counties having highly correlated COVID-19 case count trajectories increased by 66% (odds ratio [OR] 1.66, 95% CI 1.43-1.92). As the percent of a county classified as rural increased, the odds of two counties having highly correlated COVID-19 case count trajectories increased by 1% (OR 1.01, 95% CI 1.00-1.01). As the distance (in miles) between two counties increased, the odds of two counties having highly correlated COVID-19 case count trajectories decreased by 43% (OR 0.57, 95% CI 0.43-0.77). Lastly, as the log of the SCI between two Missouri counties increased, the odds of those two counties having highly correlated COVID-19 case count trajectories significantly increased by 17% (OR 1.17, 95% CI 1.09-1.26). Conclusions These results could suggest that two counties with a greater likelihood of sharing Facebook friendships means residents of those counties have a higher likelihood of sharing similar belief systems, in particular as they relate to COVID-19 and public health practices. Another possibility is that the SCI is picking up travel or movement data among county residents. This suggests the SCI is capturing a unique phenomenon relevant to COVID-19 and that it may be worth adding to other COVID-19 models. Additional research is needed to better understand what the SCI is capturing practically and what it means for public health policies and prevention practices.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3