Predicting Patient Satisfaction With Medications for Treating Opioid Use Disorder: Case Study Applying Natural Language Processing to Reviews of Methadone and Buprenorphine/Naloxone on Health-Related Social Media

Author:

Omranian SamanehORCID,Zolnoori MaryamORCID,Huang MingORCID,Campos-Castillo CelesteORCID,McRoy SusanORCID

Abstract

Background Medication-assisted treatment (MAT) is an effective method for treating opioid use disorder (OUD), which combines behavioral therapies with one of three Food and Drug Administration–approved medications: methadone, buprenorphine, and naloxone. While MAT has been shown to be effective initially, there is a need for more information from the patient perspective about the satisfaction with medications. Existing research focuses on patient satisfaction with the entirety of the treatment, making it difficult to determine the unique role of medication and overlooking the views of those who may lack access to treatment due to being uninsured or concerns over stigma. Studies focusing on patients’ perspectives are also limited by the lack of scales that can efficiently collect self-reports across domains of concerns. Objective A broad survey of patients’ viewpoints can be obtained through social media and drug review forums, which are then assessed using automated methods to discover factors associated with medication satisfaction. Because the text is unstructured, it may contain a mix of formal and informal language. The primary aim of this study was to use natural language processing methods on text posted on health-related social media to detect patients’ satisfaction with two well-studied OUD medications: methadone and buprenorphine/naloxone. Methods We collected 4353 patient reviews of methadone and buprenorphine/naloxone from 2008 to 2021 posted on WebMD and Drugs.com. To build our predictive models for detecting patient satisfaction, we first employed different analyses to build four input feature sets using the vectorized text, topic models, duration of treatment, and biomedical concepts by applying MetaMap. We then developed six prediction models: logistic regression, Elastic Net, least absolute shrinkage and selection operator, random forest classifier, Ridge classifier, and extreme gradient boosting to predict patients’ satisfaction. Lastly, we compared the prediction models’ performance over different feature sets. Results Topics discovered included oral sensation, side effects, insurance, and doctor visits. Biomedical concepts included symptoms, drugs, and illnesses. The F-score of the predictive models across all methods ranged from 89.9% to 90.8%. The Ridge classifier model, a regression-based method, outperformed the other models. Conclusions Assessment of patients’ satisfaction with opioid dependency treatment medication can be predicted using automated text analysis. Adding biomedical concepts such as symptoms, drug name, and illness, along with the duration of treatment and topic models, had the most benefits for improving the prediction performance of the Elastic Net model compared to other models. Some of the factors associated with patient satisfaction overlap with domains covered in medication satisfaction scales (eg, side effects) and qualitative patient reports (eg, doctors’ visits), while others (insurance) are overlooked, thereby underscoring the value added from processing text on online health forums to better understand patient adherence.

Publisher

JMIR Publications Inc.

Reference67 articles.

1. Key Substance Use and Mental Health Indicators in the United States: Results from the 2018 National Survey on Drug Use and HealthSubstance Abuse and Mental Health Services Administration20192023-01-06https://store.samhsa.gov/product/key-substance-use-and-mental-health-indicators-in-the-united-states-results-from-the-2018-national-survey-on-Drug-Use-and-Health/PEP19-5068

2. The Neurobiology of Opioid Dependence: Implications for Treatment

3. Commonly used terms: opioidsCenters for Disease Control and Prevention2023-01-06https://www.cdc.gov/opioids/basics/terms.html

4. Factors associated with opioid overdose during medication-assisted treatment: How can we identify individuals at risk?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metaverse;Metaverse Applications for Intelligent Healthcare;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3