Efficacy, Safety, and Evaluation Criteria of mHealth Interventions for Depression: Systematic Review

Author:

Duarte-Díaz AndreaORCID,Perestelo-Pérez LilisbethORCID,Gelabert EstelORCID,Robles NoemíORCID,Pérez-Navarro AntoniORCID,Vidal-Alaball JosepORCID,Solà-Morales OriolORCID,Sales Masnou AriadnaORCID,Carrion CarmeORCID

Abstract

Background Depression is a significant public health issue that can lead to considerable disability and reduced quality of life. With the rise of technology, mobile health (mHealth) interventions, particularly smartphone apps, are emerging as a promising approach for addressing depression. However, the lack of standardized evaluation tools and evidence-based principles for these interventions remains a concern. Objective In this systematic review and meta-analysis, we aimed to evaluate the efficacy and safety of mHealth interventions for depression and identify the criteria and evaluation tools used for their assessment. Methods A systematic review and meta-analysis of the literature was carried out following the recommendations of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Studies that recruited adult patients exhibiting elevated depressive symptoms or those diagnosed with depressive disorders and aimed to assess the effectiveness or safety of mHealth interventions were eligible for consideration. The primary outcome of interest was the reduction of depressive symptoms, and only randomized controlled trials (RCTs) were included in the analysis. The risk of bias in the original RCTs was assessed using version 2 of the Cochrane risk-of-bias tool for randomized trials. Results A total of 29 RCTs were included in the analysis after a comprehensive search of electronic databases and manual searches. The efficacy of mHealth interventions in reducing depressive symptoms was assessed using a random effects meta-analysis. In total, 20 RCTs had an unclear risk of bias and 9 were assessed as having a high risk of bias. The most common element in mHealth interventions was psychoeducation, followed by goal setting and gamification strategies. The meta-analysis revealed a significant effect for mHealth interventions in reducing depressive symptoms compared with nonactive control (Hedges g=−0.62, 95% CI −0.87 to −0.37, I2=87%). Hybrid interventions that combined mHealth with face-to-face sessions were found to be the most effective. Three studies compared mHealth interventions with active controls and reported overall positive results. Safety analyses showed that most studies did not report any study-related adverse events. Conclusions This review suggests that mHealth interventions can be effective in reducing depressive symptoms, with hybrid interventions achieving the best results. However, the high level of heterogeneity in the characteristics and components of mHealth interventions indicates the need for personalized approaches that consider individual differences, preferences, and needs. It is also important to prioritize evidence-based principles and standardized evaluation tools for mHealth interventions to ensure their efficacy and safety in the treatment of depression. Overall, the findings of this study support the use of mHealth interventions as a viable method for delivering mental health care. Trial Registration PROSPERO CRD42022304684; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=304684

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3