Wearable Device Heart Rate and Activity Data in an Unsupervised Approach to Personalized Sleep Monitoring: Algorithm Validation

Author:

Liu JiaxingORCID,Zhao YangORCID,Lai BoyaORCID,Wang HailiangORCID,Tsui Kwok LeungORCID

Abstract

Background The proliferation of wearable devices that collect activity and heart rate data has facilitated new ways to measure sleeping and waking durations unobtrusively and longitudinally. Most existing sleep/wake identification algorithms are based on activity only and are trained on expensive and laboriously annotated polysomnography (PSG). Heart rate can also be reflective of sleep/wake transitions, which has motivated its investigation herein in an unsupervised algorithm. Moreover, it is necessary to develop a personalized approach to deal with interindividual variance in sleep/wake patterns. Objective We aimed to develop an unsupervised personalized sleep/wake identification algorithm using multifaceted data to explore the benefits of incorporating both heart rate and activity level in these types of algorithms and to compare this approach’s output with that of an existing commercial wearable device’s algorithms. Methods In this study, a total of 14 community-dwelling older adults wore wearable devices (Fitbit Alta; Fitbit Inc) 24 hours a day and 7 days a week over period of 3 months during which their heart rate and activity data were collected. After preprocessing the data, a model was developed to distinguish sleep/wake states based on each individual’s data. We proposed the use of hidden Markov models and compared different modeling schemes. With the best model selected, sleep/wake patterns were characterized by estimated parameters in hidden Markov models, and sleep/wake states were identified. Results When applying our proposed algorithm on a daily basis, we found there were significant differences in estimated parameters between weekday models and weekend models for some participants. Conclusions Our unsupervised approach can be effectively implemented based on an individual’s multifaceted sleep-related data from a commercial wearable device. A personalized model is shown to be necessary given the interindividual variability in estimated parameters.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3