Natural Language Processing and Graph Theory: Making Sense of Imaging Records in a Novel Representation Frame

Author:

Binsfeld Gonçalves LaurentORCID,Nesic IvanORCID,Obradovic MarkoORCID,Stieltjes BramORCID,Weikert ThomasORCID,Bremerich JensORCID

Abstract

Background A concise visualization framework of related reports would increase readability and improve patient management. To this end, temporal referrals to prior comparative exams are an essential connection to previous exams in written reports. Due to unstructured narrative texts' variable structure and content, their extraction is hampered by poor computer readability. Natural language processing (NLP) permits the extraction of structured information from unstructured texts automatically and can serve as an essential input for such a novel visualization framework. Objective This study proposes and evaluates an NLP-based algorithm capable of extracting the temporal referrals in written radiology reports, applies it to all the radiology reports generated for 10 years, introduces a graphical representation of imaging reports, and investigates its benefits for clinical and research purposes. Methods In this single-center, university hospital, retrospective study, we developed a convolutional neural network capable of extracting the date of referrals from imaging reports. The model's performance was assessed by calculating precision, recall, and F1-score using an independent test set of 149 reports. Next, the algorithm was applied to our department's radiology reports generated from 2011 to 2021. Finally, the reports and their metadata were represented in a modulable graph. Results For extracting the date of referrals, the named-entity recognition (NER) model had a high precision of 0.93, a recall of 0.95, and an F1-score of 0.94. A total of 1,684,635 reports were included in the analysis. Temporal reference was mentioned in 53.3% (656,852/1,684,635), explicitly stated as not available in 21.0% (258,386/1,684,635), and omitted in 25.7% (317,059/1,684,635) of the reports. Imaging records can be visualized in a directed and modulable graph, in which the referring links represent the connecting arrows. Conclusions Automatically extracting the date of referrals from unstructured radiology reports using deep learning NLP algorithms is feasible. Graphs refined the selection of distinct pathology pathways, facilitated the revelation of missing comparisons, and enabled the query of specific referring exam sequences. Further work is needed to evaluate its benefits in clinics, research, and resource planning.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3