Nurses’ Work Concerns and Disenchantment During the COVID-19 Pandemic: Machine Learning Analysis of Web-Based Discussions

Author:

Jiang HaoqiangORCID,Castellanos ArturoORCID,Castillo AlfredORCID,Gomes Paulo JORCID,Li JuanjuanORCID,VanderMeer DebraORCID

Abstract

Background Web-based forums provide a space for communities of interest to exchange ideas and experiences. Nurse professionals used these forums during the COVID-19 pandemic to share their experiences and concerns. Objective The objective of this study was to examine the nurse-generated content to capture the evolution of nurses’ work concerns during the COVID-19 pandemic. Methods We analyzed 14,060 posts related to the COVID-19 pandemic from March 2020 to April 2021. The data analysis stage included unsupervised machine learning and thematic qualitative analysis. We used an unsupervised machine learning approach, latent Dirichlet allocation, to identify salient topics in the collected posts. A human-in-the-loop analysis complemented the machine learning approach, categorizing topics into themes and subthemes. We developed insights into nurses’ evolving perspectives based on temporal changes. Results We identified themes for biweekly periods and grouped them into 20 major themes based on the work concern inventory framework. Dominant work concerns varied throughout the study period. A detailed analysis of the patterns in how themes evolved over time enabled us to create narratives of work concerns. Conclusions The analysis demonstrates that professional web-based forums capture nuanced details about nurses’ work concerns and workplace stressors during the COVID-19 pandemic. Monitoring and assessment of web-based discussions could provide useful data for health care organizations to understand how their primary caregivers are affected by external pressures and internal managerial decisions and design more effective responses and planning during crises.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3