The Early Detection of Fraudulent COVID-19 Products From Twitter Chatter: Data Set and Baseline Approach Using Anomaly Detection

Author:

Sarker AbeedORCID,Lakamana SahithiORCID,Liao RuqiORCID,Abbas AamirORCID,Yang Yuan-ChiORCID,Al-Garadi MohammedORCID

Abstract

Background Social media has served as a lucrative platform for spreading misinformation and for promoting fraudulent products for the treatment, testing, and prevention of COVID-19. This has resulted in the issuance of many warning letters by the US Food and Drug Administration (FDA). While social media continues to serve as the primary platform for the promotion of such fraudulent products, it also presents the opportunity to identify these products early by using effective social media mining methods. Objective Our objectives were to (1) create a data set of fraudulent COVID-19 products that can be used for future research and (2) propose a method using data from Twitter for automatically detecting heavily promoted COVID-19 products early. Methods We created a data set from FDA-issued warnings during the early months of the COVID-19 pandemic. We used natural language processing and time-series anomaly detection methods for automatically detecting fraudulent COVID-19 products early from Twitter. Our approach is based on the intuition that increases in the popularity of fraudulent products lead to corresponding anomalous increases in the volume of chatter regarding them. We compared the anomaly signal generation date for each product with the corresponding FDA letter issuance date. We also performed a brief manual analysis of chatter associated with 2 products to characterize their contents. Results FDA warning issue dates ranged from March 6, 2020, to June 22, 2021, and 44 key phrases representing fraudulent products were included. From 577,872,350 posts made between February 19 and December 31, 2020, which are all publicly available, our unsupervised approach detected 34 out of 44 (77.3%) signals about fraudulent products earlier than the FDA letter issuance dates, and an additional 6 (13.6%) within a week following the corresponding FDA letters. Content analysis revealed misinformation, information, political, and conspiracy theories to be prominent topics. Conclusions Our proposed method is simple, effective, easy to deploy, and does not require high-performance computing machinery unlike deep neural network–based methods. The method can be easily extended to other types of signal detection from social media data. The data set may be used for future research and the development of more advanced methods.

Publisher

JMIR Publications Inc.

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3