Diagnosis of a Single-Nucleotide Variant in Whole-Exome Sequencing Data for Patients With Inherited Diseases: Machine Learning Study Using Artificial Intelligence Variant Prioritization

Author:

Huang Yu-ShanORCID,Hsu ChingORCID,Chune Yu-ChangORCID,Liao I-ChengORCID,Wang HsinORCID,Lin Yi-LinORCID,Hwu Wuh-LiangORCID,Lee Ni-ChungORCID,Lai FeipeiORCID

Abstract

Background In recent years, thanks to the rapid development of next-generation sequencing (NGS) technology, an entire human genome can be sequenced in a short period. As a result, NGS technology is now being widely introduced into clinical diagnosis practice, especially for diagnosis of hereditary disorders. Although the exome data of single-nucleotide variant (SNV) can be generated using these approaches, processing the DNA sequence data of a patient requires multiple tools and complex bioinformatics pipelines. Objective This study aims to assist physicians to automatically interpret the genetic variation information generated by NGS in a short period. To determine the true causal variants of a patient with genetic disease, currently, physicians often need to view numerous features on every variant manually and search for literature in different databases to understand the effect of genetic variation. Methods We constructed a machine learning model for predicting disease-causing variants in exome data. We collected sequencing data from whole-exome sequencing (WES) and gene panel as training set, and then integrated variant annotations from multiple genetic databases for model training. The model built ranked SNVs and output the most possible disease-causing candidates. For model testing, we collected WES data from 108 patients with rare genetic disorders in National Taiwan University Hospital. We applied sequencing data and phenotypic information automatically extracted by a keyword extraction tool from patient’s electronic medical records into our machine learning model. Results We succeeded in locating 92.5% (124/134) of the causative variant in the top 10 ranking list among an average of 741 candidate variants per person after filtering. AI Variant Prioritizer was able to assign the target gene to the top rank for around 61.1% (66/108) of the patients, followed by Variant Prioritizer, which assigned it for 44.4% (48/108) of the patients. The cumulative rank result revealed that our AI Variant Prioritizer has the highest accuracy at ranks 1, 5, 10, and 20. It also shows that AI Variant Prioritizer presents better performance than other tools. After adopting the Human Phenotype Ontology (HPO) terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108). Conclusions We successfully applied sequencing data from WES and free-text phenotypic information of patient’s disease automatically extracted by the keyword extraction tool for model training and testing. By interpreting our model, we identified which features of variants are important. Besides, we achieved a satisfactory result on finding the target variant in our testing data set. After adopting the HPO terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108). The performance of the model is similar to that of manual analysis, and it has been used to help National Taiwan University Hospital with a genetic diagnosis.

Publisher

JMIR Publications Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3