Effects of an Artificial Intelligence–Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial

Author:

Anan TomomiORCID,Kajiki ShigeyukiORCID,Oka HiroyukiORCID,Fujii TomokoORCID,Kawamata KayoORCID,Mori KojiORCID,Matsudaira KoORCID

Abstract

Background Musculoskeletal symptoms such as neck and shoulder pain/stiffness and low back pain are common health problems in the working population. They are the leading causes of presenteeism (employees being physically present at work but unable to be fully engaged). Recently, digital interventions have begun to be used to manage health but their effectiveness has not yet been fully verified, and adherence to such programs is always a problem. Objective This study aimed to evaluate the improvements in musculoskeletal symptoms in workers with neck/shoulder stiffness/pain and low back pain after the use of an exercise-based artificial intelligence (AI)–assisted interactive health promotion system that operates through a mobile messaging app (the AI-assisted health program). We expected that this program would support participants’ adherence to exercises. Methods We conducted a two-armed, randomized, controlled, and unblinded trial in workers with either neck/shoulder stiffness/pain or low back pain or both. We recruited participants with these symptoms through email notifications. The intervention group received the AI-assisted health program, in which the chatbot sent messages to users with the exercise instructions at a fixed time every day through the smartphone’s chatting app (LINE) for 12 weeks. The program was fully automated. The control group continued with their usual care routines. We assessed the subjective severity of the neck and shoulder pain/stiffness and low back pain of the participants by using a scoring scale of 1 to 5 for both the intervention group and the control group at baseline and after 12 weeks of intervention by using a web-based form. We used a logistic regression model to calculate the odds ratios (ORs) of the intervention group to achieve to reduce pain scores with those of the control group, and the ORs of the subjective assessment of the improvement of the symptoms compared to the intervention and control groups, which were performed using Stata software (version 16, StataCorp LLC). Results We analyzed 48 participants in the intervention group and 46 participants in the control group. The adherence rate was 92% (44/48) during the intervention. The participants in the intervention group showed significant improvements in the severity of the neck/shoulder pain/stiffness and low back pain compared to those in the control group (OR 6.36, 95% CI 2.57-15.73; P<.001). Based on the subjective assessment of the improvement of the pain/stiffness at 12 weeks, 36 (75%) out of 48 participants in the intervention group and 3 (7%) out of 46 participants in the control group showed improvements (improved, slightly improved) (OR 43.00, 95% CI 11.25-164.28; P<.001). Conclusions This study shows that the short exercises provided by the AI-assisted health program improved both neck/shoulder pain/stiffness and low back pain in 12 weeks. Further studies are needed to identify the elements contributing to the successful outcome of the AI-assisted health program. Trial Registration University hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR) 000033894; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000038307.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3