Current Status and Future Challenges of Sleep Monitoring Systems: Systematic Review

Author:

Pan QiangORCID,Brulin DamienORCID,Campo EricORCID

Abstract

Background Sleep is essential for human health. Considerable effort has been put into academic and industrial research and in the development of wireless body area networks for sleep monitoring in terms of nonintrusiveness, portability, and autonomy. With the help of rapid advances in smart sensing and communication technologies, various sleep monitoring systems (hereafter, sleep monitoring systems) have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned, and suitable for long-term monitoring. Objective This paper aims to review current research in sleep monitoring to serve as a reference for researchers and to provide insights for future work. Specific selection criteria were chosen to include articles in which sleep monitoring systems or devices are covered. Methods This review investigates the use of various common sensors in the hardware implementation of current sleep monitoring systems as well as the types of parameters collected, their position in the body, the possible description of sleep phases, and the advantages and drawbacks. In addition, the data processing algorithms and software used in different studies on sleep monitoring systems and their results are presented. This review was not only limited to the study of laboratory research but also investigated the various popular commercial products available for sleep monitoring, presenting their characteristics, advantages, and disadvantages. In particular, we categorized existing research on sleep monitoring systems based on how the sensor is used, including the number and type of sensors, and the preferred position in the body. In addition to focusing on a specific system, issues concerning sleep monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented an original sleep monitoring system solution developed in our laboratory. Results By retrieving a large number of articles and abstracts, we found that hotspot techniques such as big data, machine learning, artificial intelligence, and data mining have not been widely applied to the sleep monitoring research area. Accelerometers are the most commonly used sensor in sleep monitoring systems. Most commercial sleep monitoring products cannot provide performance evaluation based on gold standard polysomnography. Conclusions Combining hotspot techniques such as big data, machine learning, artificial intelligence, and data mining with sleep monitoring may be a promising research approach and will attract more researchers in the future. Balancing user acceptance and monitoring performance is the biggest challenge in sleep monitoring system research.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3