From the Public Health Perspective: a Scalable Model for Improving Epidemiological Testing Efficacy in Low- and Middle-Income Areas

Author:

Huang XuefengORCID,Kong Qian-YiORCID,Wan XiaowenORCID,Huang YatingORCID,Wang RongrongORCID,Wang XiaoxueORCID,Li YingyingORCID,Wu YuqingORCID,Guan ChongyuanORCID,Wang JunyangORCID,Zhang YuanyuanORCID

Abstract

The globe is an organically linked whole, and in the pandemic era, COVID-19 has brought heavy public safety threats and economic costs to humanity as almost all countries began to pay more attention to taking steps to minimize the risk of harm to society from sudden-onset diseases. It is worth noting that in some low- and middle-income areas, where the environment for epidemic detection is complex, the causative and comorbid factors are numerous, and where public health resources are scarce. It is often more difficult than in other areas to obtain timely and effective detection and control in the event of widespread virus transmission, which, in turn, is a constant threat to local and global public health security. Pandemics are preventable through effective disease surveillance systems, with nonpharmacological interventions (NPIs) as the mainstay of the control system, effectively controlling the spread of epidemics and preventing larger outbreaks. However, current state-of-the-art NPIs are not applicable in low- and middle-income areas and tend to be decentralized and costly. Based on a 3-year case study of SARS-CoV-2 preventive detection in low-income areas in south-central China, we explored a strategic model for enhancing disease detection efficacy in low- and middle-income areas. For the first time, we propose an integrated and comprehensive approach that covers structural, social, and personal strategies to optimize the epidemic surveillance system in low- and middle-income areas. This model can improve the local epidemic detection efficiency, ensure the health care needs of more people, reduce the public health costs in low- and middle-income areas in a coordinated manner, and ensure and strengthen local public health security sustainably.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3