Affiliation:
1. ŞIRNAK ÜNİVERSİTESİ, ŞIRNAK MESLEK YÜKSEKOKULU
2. İnönü Üniversitesi
Abstract
In this study, a PI-PD controller was designed via weighted geometric center method (WGC) for a quarter vehicle model to suppress the vertical vibrations. The proposed design is based on finding the weighted geometric center of the area formed by the control parameters that make the system stable. The WGC method has two main stages. First, an area formed by the parameters of the PD controller (kf, kd) in the inner loop is obtained and the weighted geometric center of this area is calculated. Then, using these obtained parameters, the inner loop is reduced to a single block, and the parameters of the PI controller in the external loop (kp, ki) are calculated using the stability boundary curve as in the first step, and the weighted geometric center is calculated. The simulation results show that the PI-PD controller designed with the weighted geometric center method offers successful responses for the time delay quarter vehicle system.
Publisher
Black Sea Journal of Engineering and Science
Reference39 articles.
1. Ahmad I, Shahzad M, Palensky P. 2014. Optimal PID control of magnetic levitation system using genetic algorithm. IEEE International Energy Conference and Exhibition (EnergyCon), May 13-16, Dubrovnik, Croatia, pp: 1-5.
2. Åström KJ, Hägglund T. 1995. Pid controllers: theory, design, and tuning. The international society of measurement and control. URL: https://aiecp.files.wordpress.com/2012/07/1-0-1-k-j-astrom-pid-controllers-theory-design-and-tuning-2ed.pdf (accessed date: March 21, 2023).
3. Åström KJ, Hägglund T, Hang CC, Ho WK. 1993. Automatic tuning and adaptation for PID controllers-a survey. Control Eng Pract, 1(4): 699–714.
4. Atic S, Cokmez E, Peker F, Kaya I. 2018. PID controller design for controlling integrating processes with dead time using generalized stability boundary locus. IFAC, 51: 924–929.
5. Chidambaram M, Sree RP. 2003. A simple method of tuning PID controllers for integrator/dead-time processes. Comp Chem Engin, 27(2): 211–215.