Effects of Geometric Parameters of Perforated Diffuser on Sound Pressure Level Sourced By Airflow

Author:

ERDOĞAN Ahmet1ORCID,AKSOY İshak Gökhan2ORCID,CANBAZOĞLU SuatORCID

Affiliation:

1. İNÖNÜ ÜNİVERSİTESİ

2. INONU UNIVERSITY

Abstract

This study investigates the aeroacoustic behaviors of a square truncated perforated diffuser under airflow, commonly used in Air Handling Units (AHUs). The design parameters are fundamentally taken into account to unveil the aeroacoustic performance of the diffuser. Initially, unsteady-state Computational Fluid Dynamics (CFD) simulations are conducted based on models that accurately represent the fluid domain of the chamber with the perforated diffuser in the ANSYS Fluent environment. Subsequently, the Ffowcs Williams and Hawkings (FW-H) method integrated into the software is employed to acquire time-dependent signals from microphones placed in three different locations within a perforated diffuser chamber. Finally, the results are converted to a frequency range of 0-1000 Hz using the Fast Fourier Transform (FFT) method, and the SPL values are obtained. The results show that the microphone location is crucially important to determine SPL and the porosity reduction from 0.55 to 0.35 can reduce SPL by approximately 30-40 dB. Variations in wall thickness of the diffuser fluctuated between 5-10 dB at each frequency value.

Publisher

Black Sea Journal of Engineering and Science

Reference15 articles.

1. Bezci H. 2009. Aeroacoustic properties of a radial fan. PhD Thesis, İstanbul Technical University, Institute of Science and Technology, İstanbul, Türkiye, pp: 85.

2. Bulut S, Unveren M, Arisoy, A, Boke, Y. 2011. Reducing internal losses in air handling units with CFD analysis method. TMMOB X. National Plumbing Engineering Congress and Exhibition, April 11-13, İzmir, Türkiye, pp: 291-326.

3. Erdoğan A, Daşkın M. 2023. Comparing of CFD contours using image analysing method: A study on velocity distributions. BSJ Eng Sci, 6(4): 633-638.

4. Erdoğan A. 2017. Investigation of airflow in empty chambers with perforated diffuser designed for air handling units in terms of flow and acoustic. PhD Thesis, İnönü University, Institute of Science, Malatya, Türkiye, pp: 115.

5. Fluent A. 2009. 12.0 User’s guide. Ansys Inc, 6: 552.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3