Investigating the Effect of Nozzle Diameter on Tensile Strength in 3D-Printed Printed Polylactic Acid Parts

Author:

KARTAL Fuat1ORCID,KAPTAN Arslan2ORCID

Affiliation:

1. KASTAMONU ÜNİVERSİTESİ

2. SİVAS CUMHURİYET ÜNİVERSİTESİ, SİVAS TEKNİK BİLİMLER MESLEK YÜKSEKOKULU

Abstract

Three-dimensional (3D) printing is a rapidly evolving manufacturing technology that enables the production of intricate, customizable parts with a wide range of applications. The quality and mechanical properties of printed parts are heavily influenced by the process parameters, such as nozzle size. This study presents a comprehensive investigation of the effect of nozzle diameter on the tensile strength of 3D-printed polylactic acid (PLA) parts, focusing on six nozzle sizes: 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 mm. PLA, a commonly used thermoplastic in 3D printing, was employed as the material of choice. Using an open-source Fused Filament Fabrication (FFF) 3D printer, dog bone-shaped specimens were printed according to the ASTM D638-Type IV standard for tensile testing. The results reveal a strong correlation between nozzle size and tensile strength, with smaller nozzles producing parts with higher tensile strength due to finer layers and improved interlayer adhesion. However, the trade-off between tensile strength and printing time associated with smaller nozzle sizes must be considered when optimizing the 3D printing process for specific applications. This study provides essential insights into the influence of nozzle diameter on tensile strength, offering valuable guidance for achieving desired mechanical properties in 3D-printed parts.

Funder

Kastamonu Üniversitesi

Publisher

Black Sea Journal of Engineering and Science

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology, and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3