Simulating The Yield Responses of Sugar Beet to Different Climate Change Scenarios by LINTUL-MULTICROP Model

Author:

YETİK Ali Kaan1ORCID,KIZILDENİZ Tefide1ORCID,ÜNAL Zeynep1ORCID

Affiliation:

1. NIGDE OMER HALISDEMIR UNIVERSITY

Abstract

Sugar beet is an essential crop for the sugar industry that have a very crucial role in agro-industry of Turkey and Konya is the leading city in the amount of total sugar beet production and harvested area. The predictions, that the world's human population will reach 9 billion by the end of the current century and that demand for food will increase, are forcing farmers for the decision to search for new areas for agriculture or choose the crops that will be most productive in already cultivated lands. The aim of this study was applied the LINTUL-MULTICROP Model for investigating the adaption of sugar beet for the current climatic conditions and for climate change scenarios to show response of sugar beet to an increase of carbon dioxide and temperature. Four different scenarios were compared the effects of the climate change on sugar beet farming in the semi-arid Konya Region as followings: i) scenario (a) is the current climate conditions; ii) scenario (b) is the average temperatures increased 2 °C, iii) scenario (c) is 200 ppm increasing atmospheric CO2; iv) scenario (d) new optimum sowing and harvest dates in sugar beet farming and increased temperatures and atmospheric CO2 amount were simulated together. The optimum sowing and harvesting dates of sugar beet were moved 13 days back for sowing, and 8 days forward for harvesting. The highest yield was estimated under conditions of 2 °C and 200 ppm increased atmosphere temperature and CO2 levels with new sowing and harvest dates. The yields under irrigated conditions varied between 74.4 t ha-1 and 111.2 t ha-1. The irrigation water requirements of sugar beet were ranged from 618.8 mm to 688.5 for different scenarios. In conclusion, the cultivation of sugar beet tends to alter in semi-arid Konya environment.

Publisher

Black Sea Journal of Engineering and Science

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology, and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3