Predictive Controller Strategies for Electrical Drives System using Inverter System

Author:

,Karpe Dr. Suraj R.ORCID,Deokar SanjayORCID, ,Shinde Dr. Ulhas B.ORCID,

Abstract

Advanced control strategies in power electronics include Predictive controller of current (P CURRENT CONTROL) and Predictive controller of torque (P TORQUE CONTROL). In order to operate a SRM or an induction machine, the Predictive controller of torque (P TORQUE CONTROL) approach analyses the stator flux and electromagnetic torque in the cost function (IM), and the Predictive controller of current (P CURRENT CONTROL) method [1,2] takes errors between the current reference and the measured current into account in the cost function. The switching vector selected for usage in IGBTs reduces the error between the references and the predicted values. The system restrictions are easy to include [4, 5]. The weighting component is not required. Together with the P TORQUE CONTROL and P CURRENT CONTROL systems, the SRM method is the most practicable direct control technique since it doesn't require a modulator and offers 10% to 30% more power than an induction motor [3]. With the same current, an induction motor can only generate between 70 and 90 percent of the force generated by an SRM due to its lagging power factor. SRM approach decreases 23% more THD in torque, speed, and stator current when P CURRENT CONTROL and P TORQUE CONTROL method with 15-level H-bridge multilevel inverter is compared to P CURRENT CONTROL and P TORQUE CONTROL method with 15-level H-bridge multilevel inverter utilising induction motor [21]. The transistors are only swapped when necessary to maintain the limits of torque and flux, which minimises switching losses. To improve the efficiency of a multilevel inverter, semiconductor switches are switched in a specific pattern. In contrast to the P TORQUE CONTROL and P CURRENT CONTROL approaches using a 2-level voltage source inverter, the 15-level H-bridge multilevel inverter employed in this study, coupled with SRM and IM, gives outstanding torque and flux responses and achieves robust and stable operation. This unique strategy quickly caught the interest of academics due to its simple algorithm and high performances in both steady and transient modes [8].

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of 125-Level Asymmetrical Multilevel Inverter with Reduced Switch Count;International Journal of Soft Computing and Engineering;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3