Fighter Aircraft Detection using CNN and Transfer Learning

Author:

Reddy Motati Dinesh, ,Kora Sai Venkata Rao,Ch Gnana Samhitha, ,

Abstract

In this work, Deep learning techniques such as Convolutional Neural networks (CNN) and Transfer Learning are used to detect and identify Fighter aircraft or jets. A dataset consisting of 21 different aircraft with 20000 images is being processed using the above algorithms. CNN works on the principle of "pooling," which progressively reduces the spatial size of the model to decrease the number of parameters and computations in the network. CNN's are widely used for image detection in different domains, including defense, agriculture, business, face recognition technology, etc. Transfer learning is a machine learning method where a model created for a task is reused as the initial point for a model on a second task. Transfer learning is related to issues such as multi-task learning and concept drift and is not only an area of study in deep learning. The dataset is processed and uses python libraries such as pandas, seaborn, sci-kit- learn, etc., to find any pre-trained patterns and insights. Data is separated into train and test datasets with 80-20 percent of total data, respectively. A model is built using the TensorFlow library for CNN. The metric used is "accuracy." A transfer learning model is also built to compare the accuracy results and adopt the best-fitting one

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3