IoT Based Fire Accident Detection System with Deep Learning Intelligence

Author:

Jain Hitanshi, ,Miyapuram Sai Teja,Reddy Sree Ranga, ,

Abstract

A fire accident can be caused by many hazards, such as a propane tank, a defective product, a vehicle crash, or poor workplace safety. Because accidents involving fire are often unexpected and sudden, there isn’t a standard legal process for dealing with them, other than filing a negligence or workers compensation claim. This project aims to detect and monitor Fire Accident incidents well in advance and alert the surroundings to minimize the losses. This is an integration of IoT and Deep Learning Technologies, where sensors are used to collect the relevant data under the supervision of a controller unit. The controller unit collects and sends this data to a cloud database, from where the data for the Deep Learning model is fetched. This data is then used for making some insights and further predictive analytics. From the insights, many variables were found to be one of the reasons for a fire accident to take place. We considered the information about variables like Flame sensor, Temperature, Heat Index, GPS coordinates, Smoke, Type of Gases, Date, and Time for feature set generation and fed the model to a deep neural network for making future predictions. Comparing to existing conventional methods, this proposed method is different in terms of integrating deep learning with IoT. This method of approach will predict the chance of accidents priorly by classification of data.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Reference11 articles.

1. Broomandi, P., Jahanbakhshi, A., Nikfal, A. et al. Impact assessment of Beirut explosion on local and regional air quality. Air Qual Atmos Health (2021).

2. Fire accident detection and prevention monitoring system using wireless sensor network-enabled android application;Reddy;Indian Journal of Science and Technology,2016

3. Vehicle pollution monitoring, control, and challan system using MQ2 sensor based on internet of things;Gautam;Wireless Personal Communications,2021

4. Rothfusz, L. P., & Headquarters, N. S. R. (1990). The heat index equation (or, more than you ever wanted to know about heat index). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 9023.

5. Srivastava, D., Kesarwani, A., & Dubey, S. (2018). Measurement of Temperature and Humidity by using Arduino Tool and DHT11. International Research Journal of Engineering and Technology (IRJET), 5(12), 876-878.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3