Intrusion Detection System on KDD’99 Dataset with Imbalanced Classes

Author:

Agrawal Anupam,

Abstract

The paper describes a method of intrusion detection that keeps check of it with help of machine learning algorithms. The experiments have been conducted over KDD’99 cup dataset, which is an imbalanced dataset, cause of which recall of some classes coming drastically low as there were not enough instances of it in there. For Preprocessing of dataset One Hot Encoding and Label Encoding to make it machine readable. The dimensionality of dataset has been reduced using Principal Component Analysis and classification of dataset into classes viz. attack and normal is done by Naïve Bayes Classifier. Due to imbalanced nature, shift of focus was on recall and overall recall and compared with other models which have achieved great accuracy. Based on the results, using a self optimizing loop, model has achieved better geometric mean accuracy.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3