Research of Noise in the Unmanned Aerial Vehicle’s Propeller using CFD

Author:

Abstract

The major use and need of the multi-rotor UAV in various fields has increased the importance to study the aerodynamics of multi-rotor Unmanned Aerial Vehicles such as the secondary flow over the blade, reduction of noise due to the propeller of the UAV, and the optimization of the design on the propeller with more blades to increase efficiency of the UAV. This paper mainly deals with the reduction of noise which is induced by the propeller. Since there is a demand for compact multi-rotor quite UAV as it has a low probability of detection using radar and infrared but as it generates high drive-line noise caused by propeller it cannot be implemented for some critical applications. As a result, an idea is launched to design a propeller with low drive-line noise levels. A methodology is developed to design a low noise as well as efficient propellers for multi-rotor UAVs. The important parameters like blade thickness, tip loss and blade loading are considered in this research. Also, the effects of propeller important parameters such as activity factor, advance ratio are considered. After the finalization of design consideration of UAV’s propeller and the furthermore noise reduction methodologies also studied such as leading-edge comb, trailing edge tuft, and upper surface porosity in order to generate a perfect UAV for military applications. In order to minimize the noise produced by the propeller the idea of modifying the leading-edges is finalized. Computer-AidedDesign of base propeller and propeller with leading-edge modifications has been generated with the help of CATIA V5 and the acoustic analysis for the static base and propellers with leading-edge modifications with different velocities has been simulated using ANSYS Workbench Fluent 16.2. Finally, a propeller with the leading-edge modification has been found to induce low noise.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review on Advancements in Noise Reduction for Unmanned Aerial Vehicles (UAVs);Journal of Vibration Engineering & Technologies;2024-07-19

2. Parametric Study of Sawtooth Serration Geometry for Noise Reduction in HTOL Propellers;2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES);2023-10-26

3. The effect of muffler mounting to the engine noise of LAPAN surveillance UAV - 02 (LSU-02);MACHINE LEARNING AND INFORMATION PROCESSING: PROCEEDINGS OF ICMLIP 2023;2023

4. Design and multi‐disciplinary computational investigations on PVEH patches attached horizontal axis hybrid wind turbine system for additional energy extraction in HALE UAVs;IET Renewable Power Generation;2022-10-17

5. Experimental and numerical study of novel Coanda-based unmanned aerial vehicle;Journal of Engineering and Applied Science;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3