Neuro-Fuzzy based Call Admission Control for next Generation Mobile Multimedia Networks

Author:

Abstract

As the demand of the mobile users are increasing day by day, wireless/mobile multimedia networks still need advancement in terms of, reliable traffic performance, link availability, efficient bandwidth utilization, and user mobility, that can attain extremely consistent wireless communication and data transmission over the networks. Due to the emerging demand of multimedia services a high-speed network and call admission control (CAC) scheme is required, which not only guarantees the quality of services (QoS) for new and handoff calls but also results in optimum resource utilization in bursty traffic network environments. The main objective of this integrated neural fuzzy based CAC scheme is to improve QoS with decent resource allocation, such that it minimizes the probability of call dropping and call blocking in mobile multimedia networks. The proposed neural fuzzy CAC scheme is a hybrid approach that integrates the semantic rule ability of fuzzy logic (FL) controller and self-training capability of a neural network (NN) which is further enhanced to construct an efficient computational model for traffic control and fair radio resources allocation for new calls and handoff calls. The simulation results conclude that a neural fuzzy based CAC can achieve minimal call dropping probabilities and maximum resource utilization in high-speed networks as compared to fuzzy logic based CAC and conventional CAC or existing CAC schemes

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Module Allocation Model in Distributed Computing System by Implementing Fuzzy C-means Clustering Technique;Lecture Notes in Electrical Engineering;2023

2. Handshake Comparison Between TLS V 1.2 and TLS V 1.3 Protocol;Studies in Computational Intelligence;2022

3. The Mutation Study of Social Media in Student’s Life;Machine Intelligence and Data Science Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3