Abstract
The accurate design of spur gear drive has a tremendous impact on size, weight, transmission and machine performance. Also, the demand for lighter gears is high in power transmission systems, as they save material and energy. Hence this paper presents an enhanced method to solve a two stage spur gear optimization problem. It consists of a mathematical model with a nonlinear objective function and 11 constraints. A two stage spur gear is considered. To obtain minimum volume of spur gear drive is objective of the problem. The considered design variables are: Module, number of teeth, base width of the gears and, shaft diameter and power. Besides considering regular mechanical constraints based on American Gear Manufacturers Association (AGMA) requisites, six more additional critical constraints on contact ratio, load carrying capacity, power loss, root not cut, no involute interference and line of action are imposed on the drive. Nature inspired optimization algorithms, namely, Simulated Annealing (SA), Firefly (FA) and MATLAB solver fmincon are used to find solution in MATLAB environment. Simulation results are analyzed, compared with literature and validated
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献