Practical Optimal Design on Two Stage Spur Gears Train Using Nature Inspired Algorithms

Author:

Abstract

The accurate design of spur gear drive has a tremendous impact on size, weight, transmission and machine performance. Also, the demand for lighter gears is high in power transmission systems, as they save material and energy. Hence this paper presents an enhanced method to solve a two stage spur gear optimization problem. It consists of a mathematical model with a nonlinear objective function and 11 constraints. A two stage spur gear is considered. To obtain minimum volume of spur gear drive is objective of the problem. The considered design variables are: Module, number of teeth, base width of the gears and, shaft diameter and power. Besides considering regular mechanical constraints based on American Gear Manufacturers Association (AGMA) requisites, six more additional critical constraints on contact ratio, load carrying capacity, power loss, root not cut, no involute interference and line of action are imposed on the drive. Nature inspired optimization algorithms, namely, Simulated Annealing (SA), Firefly (FA) and MATLAB solver fmincon are used to find solution in MATLAB environment. Simulation results are analyzed, compared with literature and validated

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The technical assessment of the level of innovative traction transmission of railway vehicle;EUREKA: Physics and Engineering;2023-05-25

2. Modeling and structural analysis of two stage gear box with different materials;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

3. Optimizing the weight of the two-level gear train in the personal rescue winch;Archive of Mechanical Engineering;2021-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3