Feature Selection using Hybrid Dragonfly Algorithm in a Heart Disease Predication System

Author:

Abstract

The heart disease considers as one of the fatal disease in many countries. The main reason is due to the approved methods of diagnostic are not available to the ordinary people. Many studies have been done to handle this case with the use of both methods of soft computing and machine learning. In this study, a hybrid binary dragonfly algorithm and mutual information proposed for feature selection, support vector machine and multilayer perceptron employed for classification. The Statlog dataset used for experiments. Out of a total of 270 instances of patient data, 216 employees for the purpose of practicing, 54 of them used for the purpose of examining. Maximum classification accuracy of 94.44% achieved with support vector machine and 92.59% with multilayer perceptron on features selected with binary dragonfly algorithm, whereas with features obtained from mutual information combined with binary dragonfly (MI_BDA) algorithm support vector machine and multilayer perceptron attained an accuracy of 96.29%. The time algorithm takes reduced from 15.4 with binary dragonfly algorithm to 6.95 seconds with MI_BDA.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An optimized XGBoost based classification model for effective analysis of heart disease prediction;1ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL APPLIED SCIENCES & IT’S APPLICATIONS;2023

2. Diagnosis of diabetes mellitus using (chi square-information gain) selectors and (SVM and KNN) Classifiers;2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021;2023

3. A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges;Archives of Computational Methods in Engineering;2022-11-27

4. A Survey on Speech Encryption Using Chaos Map;2022 Fifth College of Science International Conference of Recent Trends in Information Technology (CSCTIT);2022-11-15

5. Multiclass feature selection with metaheuristic optimization algorithms: a review;Neural Computing and Applications;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3