Enhancement in Heat Exchange Process in a Shell and Tube Heat Exchanger using Nano Particles

Author:

Sharma Yogesh, ,Yadav Neeraj,

Abstract

Nanoparticles and nano-fluids are having its significant role in transforming and improvising the existing tools and techniques of science and other research. This experimental study deals with the parametric analysis of Al2O3 of size 20-30 nm and CuO of size 30-50 nm nanoparticles to improve the effectiveness of a shell and tube heat exchanger. Nanoparticles used in heat exchangers improved performance through better heat transfer characteristics. An experimental investigation was done on the forced convective heat transfer and flow characteristics of the nano-fluid flowing in a horizontal shell and tube heat exchanger under turbulent flow conditions. The heat transfer of nano-fluid is found higher than that of the base liquid at same mass flow rate and temperature difference. The heat transfer thus heat transfer parameters increases with an increase in volume concentration up to 1.6 % after which heat transfer decreases due to viscosity effects.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Nano-Fluid and Water Using CFD for Heat Exchanger;International Journal of Advanced Research in Science, Communication and Technology;2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3