Machine Learning Algorithms Based Non Alcoholic Fatty Liver Disease Prediction

Author:

Munukuntla Bindu BhargaviORCID, ,Yalawar Mrutyunjaya S.,

Abstract

The early stage liver diseases prediction is an important health related research and using this kind of research easily can predict the diseases and take the remedies. The liver diseases are classified into different types such as liver cancer, liver tumor, fatty liver, hepatitis, cirrhosis etc. Non-Alcoholic Fatty Liver Disease is a kind of chronic disease which rigorous prediction is quite difficult at early stages. The prediction of fatty liver plays significant role in treating the disease and also constraining the next health consequences. This paper presents Machine Learning Algorithms based Non Alcoholic Fatty Liver Disease (NAFLD) prediction. The main objective of this project is to identify the potential factors causing NAFLD by using Machine Learning algorithms like Decision Tree (DT) classifier, Support Vector Machine (SVM) classifier, Random Forest (RF) classifier, Logistic regression (LR). Accuracy is used parameter for performance analysis evaluation. The findings of this paper show that random forest model accurately predicts a non-alcoholic fatty liver disease patient.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Reference10 articles.

1. A.Jaya Mabel Rani, S. Nishanthini, D.C.Jullie Josephine, Hridya Venugopal, S.Gracia Nissi, V. Jacintha, "Liver Disease Prediction using Semi Supervised based Machine Learning Algorithm", 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Year: 2022

2. Lukas Brausch, Steffen Tretbar, Holger Hewener, "Identification of advanced hepatic steatosis and fibrosis using ML algorithms on high-frequency ultrasound data in patients with non-alcoholic fatty liver disease", 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Year: 2021 https://doi.org/10.1109/LAUS53676.2021.9639128

3. Michal Byra, Grzegorz Styczynski, Cezary Szmigielski, Piotr Kalinowski, Lukasz Michalowski, Rafal Paluszkiewicz, Bogna Ziarkiewicz-Wroblewska, Krzysztof Zieniewicz, Andrzej Nowicki, "Adversarial attacks on deep learning models for fatty Liver Disease classification by modification of ultrasound image reconstruction method", 2020 IEEE International Ultrasonics Symposium (IUS), Year: 2020

4. Golmei Shaheamlung, Harshpreet Kaur, Jimmy Singla, "A Comprehensive Review of Medical Expert Systems for Diagnosis of Chronic Liver Diseases", 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Year: 2019 https://doi.org/10.1109/ICCIKE47802.2019.9004438

5. R Bharath, P Rajalakshmi, "Nonalcoholic Fatty Liver Texture Characterization based on Transfer Deep Scattering Convolution Network and Ensemble Subspace KNN classifier", 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), Year: 2019 https://doi.org/10.23919/URSIAP-RASC.2019.8738717

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Cirrhosis Prognosis Prediction with Optimized Ensemble Machine Learning Model;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3