Human Activity Recognition using Resnet-34 Model

Author:

Abrol* Akansha1,Sharma Anisha1,Karnic Kritika1,Ranjan Raju2

Affiliation:

1. Department of Computing Science and Engineering, Galgotias University, Greater Noida (U.P), India.

2. Department of Computing Science and Engineering, Galgotias University, Greater Noida (U.P), India

Abstract

Activity recognition has been an emerging field of research since the past few decades. Humans have the ability to recognize activities from a number of observations in their surroundings. These observations are used in several areas like video surveillance, health sectors, gesture detection, energy conservation, fall detection systems and many more. Sensor based approaches like accelerometer, gyroscope, etc., have been discussed with its advantages and disadvantages. There are different ways of using sensors in a smartly controlled environment. A step-by-step procedure is followed in this paper to build a human activity recognizer. A general architecture of the Resnet model is explained first along with a description of its workflow. Convolutional neural network which is capable of classifying different activities is trained using the kinetic dataset which includes more than 400 classes of activities. The videos last around tenth of a second. The Resnet-34 model is used for image classification of convolutional neural networks and it provides shortcut connections which resolves the problem of vanishing gradient. The model is trained and tested successfully giving a satisfactory result by recognizing over 400 human actions. Finally, some open problems are presented which should be addressed in future research.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Activity Recognition Using EfficientNet-B2 Deep Learning Model;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

2. Human Activity Recognition Using Efficientnet-B0 Deep Learning Model;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

3. Activity Prediction in Tri Pramana Learning Concept in ResNet-based Virtual Reality Environment;2023 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS);2023-11-02

4. A Quick Review and Performance Analysis of Custom and Transfer Learning CNN Architectures for Event Detection in Videos;2022 IEEE International Conference on Data Science and Information System (ICDSIS);2022-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3