Development of Power Conditioning Unit for KY Converter in Fuel Cell Power System

Author:

Bhuyan Kanhu CharanORCID, ,Jain Pushpak,Pattanaik Srutisagar, ,

Abstract

The world's growing economy and demographic advancement are driving an increase in global energy demand. As worries about carbon emissions grow and the demand for electrical energy production continues to rise, it is necessary to develop new methods of electricity production. Fuel cell energy system is one of the promising factors for addressing this problem due to its low emissions, easy accessibility, and fuel flexibility. In this paper, a mathematical model of Solid Oxide Fuel Cell (SOFC) is designed and used as an input for the KY converter. As the output voltage of the fuel cell is low, a KY Converter is desired to raise the output voltage for required applications. To regulate the electrical output voltage of the KY Converter, PID, Fuzzy Logic Controller (FLC), hybrid fuzzy PID, and an ANFIS feedback control mechanism have been simulated and investigated. The function of a fuel cell with a KY Converter, as well as state-space modelling, is developed. The Ziegler-Nichols technique is used to determine the gain parameters of a PID controller, which are Kp, Ki, and Kd. The fuel cell with a Closed-loop system of KY converter is developed using MATLAB/Simulink software. Thus, the fuel cell power system can be used for a variety of applications, including rural and military.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3