Abstract
During software development and maintenance, predicting software bugs becomes critical. Defect prediction early in the software development life cycle is an important aspect of the quality assurance process that has received a lot of attention in the previous two decades. Early detection of defective modules in software development can support the development team in efficiently and effectively utilizing available resources to provide high-quality software products in a short amount of time. The machine learning approach, which works by detecting hidden patterns among software features, is an excellent way to identify problematic modules. The software flaws in NASA datasets MC1, MW1, KC3, and PC4 are predicted using multiple machine learning classification algorithms in this work. A new model was developed based on altering the parameters of the previous XGBoost model, including N_estimator, learning rate, max depth, and subsample. The results were compared to those obtained by state-of-the-art models, and our model outperformed them across all datasets.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献