Dynamic Congestion Control Mechanism in Mobile Adhoc Network: TCP Westwood-DCC

Author:

Abstract

Transmission control protocol faces a problem of packet loss differentiation in the wireless and mobile adhoc network. Congestion control is not properly done here. It cannot manage the congestion window as per type of loss and it reduces Congestion window unnecessarily and that degrades the performance. TCP Westwood cannot identify congestion or link failure loss, and it cannot manage the congestion window as per available bandwidth. This paper discusses that TCP Westwood performs bandwidth estimation, setting up a congestion window and a slow start threshold. In mobile adhoc network, link failure may happen frequently, and it should be handled properly. Link failure can be detected with the help of retransmission timeout. Once timeout occurs Westwood performs congestion avoidance. Proposed Westwood manages three states of congestion 1) Avoidance 2) congestion and 3) No congestion, it updates congestion window and slow start threshold as per the status of network. It maintains congestion window dynamically. Network status is identified by estimated bandwidth and proportionality ratio. Proposed method is tested on NS2.35 and compared with the existing TCP variants. The proposed Westwood performs optimized link utilization and congestion control mechanism. Hence it gives significant performance for loss recovery.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-Driven Packet Loss Classification via TCP Jersey and Multi-Layer Perceptron;2023 International Conference on Computational Intelligence, Networks and Security (ICCINS);2023-12-22

2. A Software-Defined Architecture for Integrating Heterogeneous Space and Ground Networks;Frontiers in Communications and Networks;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3