Translational Calibration for Contact Type Three-Dimensional Position-Measuring Instruments

Author:

Maeda Hirofumi,

Abstract

In Japan, as the number of sewerage management facilities increases, continuous maintenance of drainage pipes and sewage pipes is considered important. However, it is grinding for operators to perform the expansive in-pipe inspection. Therefore, in recent years, inspections using stand-alone type piping inspection robots have been actively used. Inside of the pipe, there are disturbances such as unevenness, sludge, or dents at pipe joints which cause slips and tumbles of the robot. Therefore, the conventional ways of approaching those disturbances have been adjusting the size of the robot and tires according to the diameter of the pipe to prevent tipping over. We are exploring tip-over prevention measures by the software approach through advanced straight-ahead control. Currently, we are in the stage of verifying the self-position estimation necessary to realize straight-ahead control, and equipment for that purpose is required. However, to measure the position and posture of the robot inside the curved pipe, a special three-dimensional position-measuring device is required. Therefore, we have developed a three-dimensional position-measuring instrument for pipe inspection robots, but there is still an error in the absolute positioning accuracy. In this paper, to solve this error problem and make it precise, we propose a method to apply the calibration method used in the manipulator to the measuring instrument. Also, the kinematic model and its calibration parameters are explained, and a method of deleting unnecessary redundant parameters and parameter estimation by Newton's method is presented. Furthermore, in a comparative verification using a measuring instrument proposed in the paper, the positional accuracy after calibration is within a range of approximately ±1.0 mm, and the variation is also within a range of ±0.5 mm, which shows that the proposed method is effective.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Reference19 articles.

1. Japan institute of wastewater engineering technology, "Development foundation survey of sewerage facilities management robot", Sewer new technology Annual report of the Institute, 1992, pp.43-52.

2. Rome, E., Hertzberg, J., Kirchner, F., Licht, U. and Christaller, T., "Towards Autonomous Sewer Robots: the MAKRO Project", Urban Water, Vol. 1, 1999, pp. 57-70. [CrossRef]

3. Streich, H. and Adria, O., "Software approach for the autonomous inspection robot MAKRO", in Proceedings of the 2004 IEEE International Conference Robotics and Automation, 2004, pp. 3411-3416. [CrossRef]

4. Birkenhofer, C., Regenstein, K., Zöllner, J. M. and Dillmann, R., "Architecture of multi-segmented inspection Robot KAIRO-II", DOI: 10.1007/978-1-84628-974-3_35, In book: Robot Motion and Control, 2007, pp.381-389. [CrossRef]

5. Ayaka, N., Kazutomo, F., Toshikazu, S., Mikio, G. and Hirofumi M., "Prototype design for a piping inspection robot", 43rd Graduation Research Presentation Lecture of Student Members of the JSME, 2013, 716.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Tire Shape on Localization Accuracy in Piping Inspection Robots;International Journal of Recent Technology and Engineering (IJRTE);2024-03-30

2. Calibration Considering the Direction of Rotation for Contact Type Three-Dimensional Position-Measuring Instruments;International Journal of Recent Technology and Engineering (IJRTE);2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3