Abstract
The main objective of this research is to predict crop yields based on cultivation area, Rainfall and maximum and minimum temperature data. It will help our Indian farmers to predict crop yielding according to the environment conditions. Nowadays, Machine learning based crop yield prediction is very popular than the traditional models because of its accuracy. In this paper, linear regression, Support Vector Regression, Decision Tree and Random forest is compared with XG Boost algorithm. The above mentioned algorithms are compared based on R2 , Minimum Square Error and Minimum Absolute Error. The dataset is prepared from the data.gov.in site for the year from 2000 to 2014. The data for 4 south Indian states Andhra Pradesh, Karnataka, Tamil Nadu and Kerala data alone is taken since all these states has same climatic conditions. The proposed model in this paper based on XG Boost is showing much better results than other models. In XG Boost R2 is 0.9391 which is the best when compared with other models.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献