RF and Shunt Active Power Filters at Multiple Points of Common Couplings of Radial Electrical Systems

Author:

Rahman Nor Farahaaida Abdul,

Abstract

This work investigates the effects of RL filters and single-phase Shunt Active Power Filters (SAPFs) on the supply and load current waveforms and their properties. The parameters involved are rms, input Power Factor (PF) and Total Harmonic Distortion (THD). These parameters can describe the quality of any electrical power system, especially PF and THD. This work focuses on implementing both filters in an electrical radial system due to the limited research work. Hence, the effects of utilising both filters in the radial system are studied. In this work, both filters connect at different Points of Common Couplings (PCCs) of a single-phase radial electrical system. The PCCs are located before composite loads (Case 1), before all nonlinear loads (Case 1) and before individual nonlinear loads (Case 3). Both Cases 1 and 2 apply a centralised SAPF, and Case 3 employs individual SAPFs. Matlab/ Simulink simulates all case studies under four operating conditions: (1) without any filters, (2) with SAPFs only, (3) with RL filters only, and (4) with the RL filters and SAPFs. According to the simulation results, the SAPFs require the RF filters to compensate harmonic components effectively. Otherwise, the SAPF’s injection current consists of high current spikes. However, the RF filters may slightly alter the load current waveforms, rms and THD values; the changes are insignificant. Moreover, based on the THD values of the compensated supply current waveform, the centralised SAPFs seem more suitable to be employed in the radial system. By utilising the centralised SAPFs, the THD values of the supply current are lower than using the individual SAPFs. Thus, it can be stated that the centralised SAPFs exhibit better performance. Nevertheless, connecting both filters on the PCCs of all nonlinear loads (Case 2) is suitable to avoid any linear load current waveform deterioration.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3