Breast Cancer Prediction using Machine Learning

Author:

Abstract

One of the most dreadful disease is breast cancer and it has a potential cause for death in women. Every year, death rate increases drastically due to breast cancer. An effective way to classify data is through classification or data mining. This becomes very handy, especially in the medical field where diagnosis and analysis are done through these techniques. Wisconsin Breast cancer dataset is used to perform a comparison between SVM, Logistic Regression, Naïve Bayes and Random Forest. Evaluating the correctness in classifying data based on accuracy and time consumption is used to determine the efficiency of the algorithms, which is the main objective. Based on the result of performed experiments, the Random Forest algorithm shows the highest accuracy (99.76%) with the least error rate. ANACONDA Data Science Platform is used to execute all the experiments in a simulated environment.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring novel protein-based biomarkers for advancing breast cancer diagnosis: A review;Clinical Biochemistry;2024-07

2. A Machine Learning Approach to Predictive Modeling for Breast Cancer Prediction;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

3. Deep Learning Paradigms for Breast Cancer Diagnosis: A Comparative Study on Wisconsin Diagnostic Dataset;Malaysian Journal of Science and Advanced Technology;2024-03-18

4. Breast Cancer Detection Using Watershed and Back Propagation Algorithm;2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT);2024-03-15

5. Breast Cancer Prediction Using Hybrid Logistic Regression;Algorithms for Intelligent Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3