Sentiment Analysis and Deep Learning Based Cyber Bullying Detection in Twitter Dataset

Author:

T.T Sherly, ,Jeetha B. Rosiline,

Abstract

When somebody, usually a teenager, abuses or harasses individual on the internet and other digital places, mainly on social networking platforms, this is termed as cyberbullying. Cyberbullying, like all types of bullying, produces psychological, emotional, and physical distress. Every individual's reaction to being bullied is diverse, but research has discovered certain common patterns. In a recent study, we introduced a technique called Hybrid Firefly Artificial Neural Networks (HFANN) to combat cyberbullying. Nevertheless, without considering the sentiment analysis features, accuracy of cyber bullying identification is lowered in this study. The Sentiment Analysis and Deep Learning based Cyber Bullying Detection (SADL-CDD) approach is used in the suggested research approach to address this issue. The punctuations, urls, html tags, and emoticons from the input tweet comments are removed first in this study project. Sentiment feature extraction is performed after pre-processing to improve classification accuracy. The Modified Fruit Fly Algorithm (MFFA) is used to choose the best features from the extracted features. Following feature selection, cyber bullying detection is carried out using a Hybrid Recurrent Residual Convolutional Neural Network (HRecRCNN). The experimental outcome of this study indicates the efficiency of the suggested approach. In comparison to current algorithms, the SADL-CDD method delivers improved classification performance with respect to reduced time complexity, greater precision, recall, f-measure, and accuracy.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Reference24 articles.

1. Loneliness and social internet use: pathways to reconnection in a digital world?;Nowland;Perspectives on Psychological Science,2018

2. Social networking sites;Miller;In Digital anthropology (pp,2020

3. Consequences of cyberbullying and social overload while using SNSs: A study of users' discontinuous usage behavior in SNSs;Cao;Information Systems Frontiers,2020

4. Measuring cyberbullying: Implications for research;Patchin;Aggression and Violent Behavior,2015

5. Cyberbullying: What's the problem?;Deschamps;Canadian Public Administration,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modern Web Development using CSS & HTML;International Journal of Emerging Science and Engineering;2024-05-30

2. An Efficient Model to Detect the Presence of Hinglish Text in YouTube Data;2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3