Classification of Doppler Ultrasound Blood Flow Signals of Lower Extremity Arteries for the Early Detection of Diabetic Foot

Author:

KS Suresh, ,N Prof. (Dr.) Vijayakumar,A Prof. (Dr.) Sukesh Kumar, ,

Abstract

Peripheral arterial disease is one of the key indicators of diabetic foot, which can be easily identified by ultrasound diagnostic techniques. The work aims to detect diabetic foot in early stages by classifying the blood flow signals of lower extremity arteries being captured by ultrasound doppler methods. Samples are collected from diabetic patients with and without having probable symptoms of arterial diseases. Doppler examination has been conducted on posterior tibial artery for 354 subjects with a transducer of 8 MHz frequency. The auscultation, method of listening sounds of internal organs, is employed as medical diagnostic tool for identifying pathological conditions. Each artery in the human body has a unique profile of Doppler flow. This fixed profile may be changed with the presence of a particular disease. The received signal has a spectrum of Doppler-shifted signals with respect to the existence of a velocity profile across the vessel lumen. Changes to the shape of this profile is an indicator of the severity of disease. Various features are extracted by using various statistical and signal processing functions. The feature analysis was accomplished with machine learning algorithms. Naïve Bayes, Tree and SVM algorithms are employed with MATLAB Toolboxes. Comparing the performance of these algorithms, the Tree method is found superior than the others. So, the proposed classification methodology can be employed as a key factor for the early stage detection of diabetic foot. As diabetic foot is correlated with many other parameters which effects the pressure and flow velocity of lower extremities, an integrated disease prediction model is proposed by incorporating the ultrasound doppler technique.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3