Emotion Recognition from Facial Expression using Deep Learning

Author:

Abstract

Facial expression recognition is the part of Facial recognition which is gaining more importance and need for it increases tremendously. Though there are methods to identify expressions using machine learning and Artificial Intelligence techniques, this work attempts to use deep learning and image classification method to recognize expressions and classify the expressions according to the images. Various datasets are investigated and explored for training expression recognition model are explained in this paper. Inception Net is used for expression recognition with Kaggle (Facial Expression Recognition Challenge) and Karolinska Directed Emotional Faces datasets. Final accuracy of this expression recognition model using Inception Net v3 Model is 35%(~).

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Facial Emotion Recognition (FER) using Machine Learning and Deep Learning Methods;International Journal of Advanced Research in Science, Communication and Technology;2024-08-01

2. Performance Analysis of Child Emotion Detection using Haar Cascade and CNN;International Journal of Engineering and Advanced Technology;2024-04-30

3. Emotional detection system using machine learning;AIP Conference Proceedings;2024

4. Emotion Detection for the Blind Using Deep Learning;Lecture Notes in Networks and Systems;2024

5. Understanding Facial Expression of Children with Autism Using Learning Theory;2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3