Analyzing AWS Edge Computing Solutions to Enhance IoT Deployments

Author:

,Borra PraveenORCID,Mullapudi MahidharORCID, ,Nerella HarshavardhanORCID, ,Prakashchand Lalith KumarORCID,

Abstract

This paper explores integrating Internet of Things (IoT) deployments with edge computing, focusing on Amazon Web Services (AWS) as a key facilitator. It provides an analysis of AWS IoT services and their integration with edge computing technologies, addressing challenges, and practical applications across industries, and outlining future research directions. IoT and edge computing revolutionize data processing by enabling real-time analytics, reduced latency, and enhanced operational efficiency. IoT involves interconnected devices autonomously gathering and exchanging data, while edge computing processes data near its source, decentralizing data processing and minimizing data transmission to centralized servers. AWS facilitates scalable and secure infrastructures for IoT and edge computing. AWS IoT Core manages IoT device connectivity and data ingestion, AWS Greengrass extends AWS capabilities to edge devices, and AWS Lambda enables serverless computing, empowering efficient deployment and scaling of IoT applications. Centralized cloud architectures often struggle with vast IoT data. Edge computing decentralizes data processing, reducing latency, enhancing real-time capabilities, and minimizing bandwidth. AWS ensures secure device connectivity through AWS IoT Core, supporting various protocols for seamless integration with IoT devices. AWS Greengrass allows local data processing and machine learning at the edge, vital for environments with limited connectivity or stringent latency requirements. AWS Lambda supports serverless computing, enabling scalable, event-driven architectures without server management, crucial for fluctuating IoT workloads. In conclusion, AWS advances IoT capabilities at the edge, with practical implementations across industries. As IoT evolves, AWS remains pivotal, innovating to meet dynamic IoT deployment demands.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Reference22 articles.

1. Mukherjee, M., Matam, R., & Shu, L. (2018). IoT for Smart Grids: Design Challenges and Paradigms. IEEE Access, 6, 2856-2863.

2. Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30-39. https://doi.org/10.1109/MC.2017.9

3. Amazon Web Services. (n.d.). AWS IoT Core Documentation. Accessed June 25, 2024, from https://aws.amazon.com/iot-core/

4. Li, D., Xu, L. D., & Zhao, S. (2018). Secured Edge Computing-Based Communication Architecture for IoT. IEEE Internet of Things Journal, 5(2), 691-699.

5. Amazon Web Services, AWS Greengrass Documentation. Accessed June 25, 2024 from https://aws.amazon.com/greengrass/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3