Voltage Profile Improvement of a Disturbed Electric Power System using UPFC Compensation

Author:

Abstract

The major objective of using flexible alternating current transmission systems (FACTS) devices in an interconnected electric power transmission network is to improve the parameters of the transmission line. This study presents the voltage profile improvement and power loss reduction of the Nigeria 330 kV transmission network using the unified power flow controller (UPFC) as an optimal FACTS device. The study utilized the power systems analysis toolbox (PSAT) 2.1.10 that is embedded in MATLAB 2017a to model the Nigeria 330 kV transmission network that consists of 9 generating stations, 31 buses and 42 transmission lines. The Newton Raphson load flow algorithm was used to carry out the load flow study using data obtained from the transmission company of Nigeria. Voltages less than 0.95pu (313.5kV) were assumed to be low voltage while those greater than 1.05pu (346.5kV) were assumed to be high voltage. A base case load flow study was carried out without the use of UPFC to determine weak buses. The outcome of the base case simulation without the use of the UPFC showed that seven buses were operating outside the lower operating limit. After compensation using the UPFC, the operating voltages at each of the buses were found to be within the stated limit. Findings from the study show that the weak buses occurred as a result of the long distances between the transmission lines and the generating stations. The transmission line losses were found to have been reduced from 71.66MW to 32.95MW and from 76.7MVAR to 41.89MVAR respectively.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FACTS Devices as a Solution to Power Industries Problems: A Review;European Journal of Theoretical and Applied Sciences;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3