Author:
Agrawal sManish, ,Khan Dr Asif Ullah,Shukla Dr Piyush Kumar, ,
Abstract
The stock market is highly volatile and complex in nature. Technical analysts often apply Technical Analysis (TA) on historical price data, which is an exhaustive task and might produce incorrect predictions. The machine learning coupled with fundamental and / or Technical Analysis also yields satisfactory results for stock market prediction. In this work an effort is made to predict the price and price trend of stocks by applying optimal Long Short Term Memory (O-LSTM) deep learning and adaptive Stock Technical Indicators (STIs). We also evaluated the model for taking buy-sell decision at the end of day. To optimize the deep learning task we utilized the concept of Correlation-Tensor built with appropriate STIs. The tensor with adaptive indicators is passed to the model for better and accurate prediction. The results are analyzed using popular metrics and compared with two benchmark ML classifiers and a recent classifier based on deep learning. The mean prediction accuracy achieved using proposed model is 59.25%, over number of stocks, which is much higher than benchmark approaches.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献