Sentiment Analysis of Flipkart Product Reviews using Natural Language Processing

Author:

Kiruthika SORCID, ,Dharshini U SnehaORCID,Vaishnavi K RORCID,Priya R V VishwaORCID, , ,

Abstract

In this contemporary world, people depend more on ecommerce sites or applications to purchase items on-line. People purchase items on-line based upon the scores and evaluates offered by individuals that purchased items previously which identifies the success or failing of the item. Furthermore, business suppliers or manufacturers identify the success or failing of their item by evaluating the evaluates offered by the clients. In current system, a number of techniques were utilized to evaluate a dataset of item evaluates. It likewise provided belief category formulas to use a monitored discovering of the item evaluates situated in 2 various datasets. The proposed speculative methods examined the precision of all belief category formulas, and ways to identify which formula is more precise. Additionally, the existing system unable to spot phony favorable evaluates and phony negative reviews with discovery procedures. One of the most popular works was done "Bad" and "Outstanding" seed words are utilized by him to determine the semantic positioning, factor smart shared info technique is utilized to determine the semantic positioning. The belief positioning of a file was determined as the typical semantic positioning of all such expressions. Semantic Positioning of context independent viewpoints is identified and the context reliant viewpoints utilizing linguistic guidelines to infer positioning of context unique reliant viewpoint are thought about. Contextual info from various other evaluates that discuss the exact same item function to identify the context indistinct-dependent viewpoints were drawn out.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3