Estimating Tidal Sea levels along the Central Coast of the Western Arabian Gulf using Machine Learning Algorithms (MLAs)

Author:

Almaliki Abdulrazak H.ORCID,

Abstract

Precise tidal forecasting is an academic exercise and a crucial tool for designing and constructing coastal and marine infrastructure. Machine learning algorithms (MLAs) like Random Forest Regression (RF), K-Nearest Neighbors Regression (KN), Gradient Boosting Machines (GBM), and artificial neural networks (ANNs) are powerful data-driven techniques that can be harnessed for this practical purpose. This study utilizes four machine learning algorithms (MLAs), namely (RF), (KN), (GBM), and the Artificial Neural Network - Multilayer Perceptron (ANN-MLP) model, to accurately estimate the tidal levels along the central coast of the western Arabian Gulf, with direct implications for real-world infrastructure planning and construction. Several metrics, such as mean absolute error (MAE), mean squared error (MSE), normalized mean square error (NMSE), mean absolute percentage error (MAPE), correlation coefficient (R), and root mean square error (RMSE), are used to compare how well the MLAs forecast daily tidal levels. The results confirmed the ANN-MLP model's superiority over the other approaches. The ANN-MLP model, a specific type of artificial neural network, yields enhancements in (RMSE) of 8.945% and 19.05%, 14.18% compared to (RF), (KN), and (GBM), respectively, throughout the testing process. The ANN-MLP, being a powerful and versatile machine learning algorithm, demonstrated the best level of accuracy, together with the lowest values for (RMSE). This experiment unequivocally proves that the ANN-MLP method can be utilized as a supervised machine-learning method for accurately forecasting seawater levels of tidal.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3