Python NLTK Sentiment Inspectionusing Naïve Bayes Classifier

Author:

Abstract

The Web is one of the richest sources for gathering of consumer reviews and opinions. There are many websites which contains opinions of the customers in the form of reviews, blogs, discussion groups, and forums. This project focuses on customer reviews on the restaurants. It predicts whether the given comment is either a positive or negative using supervised machine learning techniques. The project makes use of a dataset from Kaggle website. The dataset consists of comment and the type of comment (i.e., either positive or negative). This project makes a study on classification algorithm and text mining approaches to identify the type of comment. Firstly, the data set which is taken is made free from duplicates. That is duplicates are removed then it is followed by text pre-processing that involves removal of punctuation marks, stop word removal and then conversion of the whole text into vector format would takes place. The conversion from text to vector is an essential step because the English cannot be directly used for the analysis as we are working with linear algebra. So, as to work with this data, it has to be converted to vector format and we are using CountVectorizer to convert the data to the vector format. And finally comes the classification part. We are using Naive Bayes algorithm for this classification. This classification makes the data set into two parts as mentioned above. Here we are taking 70 percent of the data to be train data set and 30 percent of the data to be test data set

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Player Discovery via Machine Learning;International Journal of Advanced Research in Science, Communication and Technology;2024-05-24

2. DFR-TSD: A Sustainable Deep Learning Based Framework for Sustainable Robust Traffic Sign Detection under Challenging Weather Conditions;E3S Web of Conferences;2023

3. Go-Food Sentiment Analysis Using Twitter Data, Compared the Performance of the Random Forest Algorithm with That of the Linear Support Vector Classifier;Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science);2022

4. Crop Yield Prediction;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2021-06-15

5. Knowledge Extraction from Twitter Towards Infectious Diseases in Spanish;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3