Evaluation and Evolution of Object Detection Techniques YOLO and R-CNN

Author:

Abstract

Object detection has boomed in areas like image processing in accordance with the unparalleled development of CNN (Convolutional Neural Networks) over the last decade. The CNN family which includes R-CNN has advanced to much faster versions like Fast-RCNN which have mean average precision(Map) of up to 76.4 but their frames per second(fps) still remain between 5 to 18 and that is comparatively moderate to problem-solving time. Therefore, there is an urgent need to increase speed in the advancements of object detection. In accordance with the broad initiation of CNN and its features, this paper discusses YOLO (You only look once), a strong representative of CNN which comes up with an entirely different method of interpreting the task of detecting the objects. YOLO has attained fast speeds with fps of 155 and map of about 78.6, thereby surpassing the performances of other CNN versions appreciably. Furthermore, in comparison with the latest advancements, YOLOv2 attains an outstanding trade-off between accuracy and speed and also as a detector possessing powerful generalization capabilities of representing an entire image

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MediGlove: Integrating IoT and Machine Learning for Personalized Remote Health Care;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. An Efficient Approach to Deal with Cyber Bullying using Machine Learning: A Systematic Review;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

3. Comparison Using Intelligent Systems for Data Prediction and Near Miss Detection Techniques;Pertanika Journal of Science and Technology;2023-12-21

4. In-process detection of failure modes using YOLOv3-based on-machine vision system in face milling Inconel 718;The International Journal of Advanced Manufacturing Technology;2023-08-24

5. Batch Normalization based Convolutional Block YOLOv3 Real Time Object Detection of Moving Images with Backdrop Adjustment;2023 9th International Conference on Smart Computing and Communications (ICSCC);2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3