Rainfall Prediction using Regression Model

Author:

Abstract

Artificial intelligence is been widely used in all the applications and weather forecasting is not an exception. When it comes to weather forecasting, rainfall prediction is one of the most widely used research areas as numerous lives and property damages occur due to this. Intense rainfall has abundant impacts on society and on our daily life from cultivation to disaster measures. Previous rainfall prediction models that are widely used, makes use of many the complicated blend of mathematical instruments which was insufficient to get a higher classification rate. In this project, we propose new novel methods for predicting monthly rainfall using linear regressionanalysis. Rainfall predictions are made by collecting quantitative data about the current state of the atmosphere. Numerous machine learning algorithms can learn complex mappings from inputs to outputs, based solely on samples and require limited. Accurate prediction of rainfall is a difficult task due to the dynamic nature of the atmosphere. To predict the future’s rainfall condition, the variation in the conditions in past years must be utilized. We have proposed the use of linear regressions by making use of various parameters such as temperature, humidity,and wind. The proposed model tends to forecast rainfall based on the previous records of a particular geographic area, therefore, this prediction will prove to be much reliable. The performance of the model is more accurate when compared with traditional rainfall prediction systems

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3