Phishing Websites Detection using Machine Learning

Author:

Abstract

Phishing is a common attack on credulous people by making them to disclose their unique information using counterfeit websites. The objective of phishing website URLs is to purloin the personal information like user name, passwords and online banking transactions. Phishers use the websites which are visually and semantically similar to those real websites. As technology continues to grow, phishing techniques started to progress rapidly and this needs to be prevented by using anti-phishing mechanisms to detect phishing. Machine learning is a powerful tool used to strive against phishing attacks. This paper surveys the features used for detection and detection techniques using machine learning

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the pattern of PhishingAttacks using the Machine Learning approach;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Enhancing Cybersecurity: A Comprehensive Analysis of Machine Learning Techniques in Detecting and Preventing Phishing Attacks with a Focus on Xgboost Algorithm;2024 International Conference on Intelligent Systems for Cybersecurity (ISCS);2024-05-03

3. PHISHSNAP-A Chrome Extension Tool used for Detection of Phishing applying Machine Learning;Journal of Artificial Intelligence and Capsule Networks;2024-03

4. Email spam detection and filtering using machine learning;AIP Conference Proceedings;2024

5. Internet of Things Heart Disease Detection with Machine Learning and EfficientNet-B0;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3