Automated Plant Disease Detection using Deep Learning Architectures with Autonomous rover

Author:

Abstract

Agriculture is the backbone and plays a vital role in many Asian countries. Farmers mainly depend on their agricultural produce for their living. A report says one-third of the farmers income account’s for the agricultural loss which is primarily due to plant diseases. To combat this farmers are in need of a early plant disease identification mechanism. Observation of individual plants in the farm for detecting the disease is labor-intensive and time consuming work, if the farm is vast and multiple plants are cultivated then it’s even worse. To solve such issues, current technologies like the Internet of Things (IoT) and artificial intelligence (AI) and Machine Learning (ML) are used to predict the diseases more effectively. Farmers usually detect plant diseases with the help of images captured manually and analyzed separately by experts. The proposed system renders an efficient solution for detecting multiple diseases in several plant varieties. The system is designed to detect and recognize several plant varieties, specifically pepper, grapes, and strawberry. The proposed system discovers various plant’s various diseases based on the inputs obtained by capturing images from a built-in camera present in the Autonomous rover. The rover also record’s it’s GPS location and makes a map of the entire farm traced and checked by the robot. The images are processed and are classified into their respective categories using deep learning algorithms. Convolutional neural networks the powerful methodology for image classification is the underlying principle applied. The deep learning model’s architecture namely, VGG16 and InceptionResNetV2, are used to train the model. These models are primarily made of convolutional layers. On testing, we recorded am accuracy of 93.21% was obtained from VGG16, and 95.24% from InceptionResNetV2.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3