Abstract
This review article provides an overview of the current state of data mining applications in healthcare, including case studies, challenges, and future directions. The article begins with a discussion of the role of data mining in healthcare, highlighting its potential to transform healthcare delivery and research. It then provides a comprehensive review of the various data mining techniques and tools that are commonly used in healthcare, including predictive modelling, clustering, and association rule mining. The article also discusses some key challenges associated with data mining in healthcare, such as data quality, privacy, and security, and suggests possible solutions. Finally, the article concludes with a discussion of the future directions of data mining in healthcare, highlighting the need for continued research and development in this field. The article emphasises the importance of collaboration between healthcare providers, data scientists, and policymakers to ensure that data mining is used ethically and effectively to improve patient outcomes and support evidence-based decision-making in healthcare.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,History,Education
Reference19 articles.
1. Shekhar S, Xiong H (2008) Active Data Mining. Encycl GIS 10-10. [CrossRef]
2. Liao SH, Chu PH, Hsiao PY (2012) Data mining techniques and applications - A decade review from 2000 to 2011. Expert Syst Appl 39:11303-11311. [CrossRef]
3. Jothi N, Rashid NA, Husain W (2015) Data Mining in Healthcare - A Review. Procedia Comput Sci 72:306-313. [CrossRef]
4. John LH, Kors JA, Reps JM, et al (2022) Logistic regression models for patient-level prediction based on massive observational data: Do we need all data? Int J Med Inform 163:104762. [CrossRef]
5. Jegelevičius D, Lukoševičius A, Paunksnis A, Barzdžiukas V (2002) Application of Data Mining Technique for Diagnosis of Posterior Uveal Melanoma. Informatica 13:455-464