Abstract
This research marks a transformative leap in personalized learning through real-time affective hand gesture recognition in EMASPEL (Emotional Multi-Agents System for Peer-to-peer E-Learning), an educational platform. Our deep learning model, a meticulously crafted ensemble of convolutional and recurrent neural networks, deciphers the unspoken language of emotions embedded within student gestures, accurately capturing both spatial and temporal patterns. This detailed emotional map empowers EMASPEL to tailor its interactions with exquisite precision, addressing frustration, nurturing curiosity, and maximizing student engagement. The impact is profound: students flourish in personalized learning environments, experiencing enhanced outcomes and a newfound connection to their educational journey. Teachers, equipped with real-time emotional insights, provide targeted support and cultivate a more inclusive, responsive classroom. Beyond gestures, we envision a future enriched by multimodal data integration, encompassing facial expressions, voice analysis, and potentially physiological sensors, to paint even richer portraits of student emotions and cognitive states. Continuous refinement through rigorous longitudinal studies will pave the way for deeper understanding and ensure responsible implementation. Ultimately, this research reimagines education as a dynamic ensemble of personalized learning, where technology serves as a bridge between teacher and student, unlocking not just academic success but a lifelong love of knowledge.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Reference21 articles.
1. Alpaydin, E. (2022). Introduction to machine learning (4th ed.). MIT Press.
2. Ben Ammar, M., Neji, M., ALIMI, M.A and Gouardères, G. (2010) ''The Affective Tutoring System'', Expert Systems with Applications 37 3013-3023. Elsevier. https://doi.org/10.1016/j.eswa.2009.09.031
3. Cao, C., Xu, D., Yang, Z., & Wang, R. (2020). Real-time hand gesture recognition for human-computer interaction with a multi-scale convolutional neural network. Sensors, 20(13), 3705. doi:10.3390/s20133705 https://doi.org/10.3390/s20133705
4. Ekman, P. (2009). Unmasking the face: A guide to recognizing emotions from facial expressions (Rev. and updated ed.). Malor Books.
5. Fernández-Rodríguez, A., Martinez-Gonzalez, A., & Gonzalez-Mancera, A. (2023). A review of affective computing applications in education. Sensors, 23(10), 5957. doi:10.3390/s23105957