Human Face Recognition using LBPH

Author:

Abstract

During the beginning of seventieth centuries, human facial recognition has become one among the researched areas in the area of finger print scanning and computer vision. Identifying a person with an image has been popularized through the mass media. The recent technologies are totally focusing on developing the smart systems that will recognize the faces for biometric purposes. In this context automatic face recognition is applied for security purposes to find the criminal, attendance system, scientific laboratories etc. This research paper presents the frame work for real time face detection. However, it is less robust to finger print or retina scanning. This paper describes about the face detection and recognition. These technologies are available in the Open-Computer-Vision (OpenCV) library and methodology to implement them using Python in image processing and machine learning. For face detection, Haar-Cascades algorithms were used and for face recognition the algorithm like Eigen faces, and Local binary pattern histograms were used.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Machine Recognition Technology Based on User Scene;2023 2nd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI);2023-10-17

2. Comparative survey analysis of the CNN and LBPH Face Recognition Learning Algorithms;Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing;2023-08-03

3. A Novel Face Recognition Model Based on Feature Registration;2023 International Conference on Communications, Computing and Artificial Intelligence (CCCAI);2023-06

4. Face Recognition using Raspberry Pi;Journal of Image Processing and Intelligent Remote Sensing;2022-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3